hunkier

学习笔记,开源代码,技术分享

MySQL实战45讲笔记

极客时间《MySQL实战45讲笔记》学习笔记

基础篇

大体来说,MySQL 可以分为 Server 层和存储引擎层两部分。

Server 层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。

而存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持 InnoDB、MyISAM、Memory 等多个存储引擎。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始成为了默认存储引擎。

WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘

具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做。

nnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写。

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe

重要的日志模块:binlog

MySQL 整体来看,其实就有两块:一块是 Server 层,它主要做的是 MySQL 功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的粉板 redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)。

因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。

这两种日志有以下三点不同。

  1. redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
  2. redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
  3. redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

有了对这两个日志的概念性理解,我们再来看执行器和 InnoDB 引擎在执行这个简单的 update 语句时的内部流程。

  1. 执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2 这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
  2. 执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
  3. 引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare 状态。然后告知执行器执行完成了,随时可以提交事务。
  4. 执行器生成这个操作的 binlog,并把 binlog 写入磁盘。
  5. 执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。

将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是”两阶段提交”。

redo log 用于保证 crash-safe 能力。innodb_flush_log_at_trx_commit 这个参数设置成 1 的时候,表示每次事务的 redo log 都直接持久化到磁盘。这个参数我建议你设置成 1,这样可以保证 MySQL 异常重启之后数据不丢失。

sync_binlog 这个参数设置成 1 的时候,表示每次事务的 binlog 都持久化到磁盘。这个参数我也建议你设置成 1,这样可以保证 MySQL 异常重启之后 binlog 不丢失。

隔离性与隔离级别

提到事务,你肯定会想到 ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性),今天我们就来说说其中 I,也就是“隔离性”。

当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。

在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。下面我逐一为你解释:

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。

配置的方式是,将启动参数 transaction-isolation 的值设置成 READ-COMMITTED。你可以用 show variables 来查看当前的值。

1
show variables like 'transaction_isolation';

事务的启动方式

如前面所述,长事务有这些潜在风险,我当然是建议你尽量避免。其实很多时候业务开发同学并不是有意使用长事务,通常是由于误用所致。MySQL 的事务启动方式有以下几种:

  1. 显式启动事务语句, begin 或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
  2. set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。

在 autocommit 为 1 的情况下,用 begin 显式启动的事务,如果执行 commit 则提交事务。如果执行 commit work and chain,则是提交事务并自动启动下一个事务,这样也省去了再次执行 begin 语句的开销。同时带来的好处是从程序开发的角度明确地知道每个语句是否处于事务中。

你可以在 information_schema 库的 innodb_trx 这个表中查询长事务,比如下面这个语句,用于查找持续时间超过 60s 的事务。

1
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60;

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。

如果 数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

如何避免长事务对业务的影响?

这个问题,我们可以从应用开发端和数据库端来看。

首先,从应用开发端来看:

  1. 确认是否使用了 set autocommit=0。这个确认工作可以在测试环境中开展,把 MySQL 的 general_log 开起来,然后随便跑一个业务逻辑,通过 general_log 的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成 1。
  2. 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用 begin/commit 框起来。我见过有些是业务并没有这个需要,但是也把好几个 select 语句放到了事务中。这种只读事务可以去掉。
  3. 业务连接数据库的时候,根据业务本身的预估,通过 SET MAX_EXECUTION_TIME 命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)

其次,从数据库端来看:

  1. 监控 information_schema.Innodb_trx 表,设置长事务阈值,超过就报警 / 或者 kill;
  2. Percona 的 pt-kill 这个工具不错,推荐使用;
  3. 在业务功能测试阶段要求输出所有的 general_log,分析日志行为提前发现问题;
  4. 如果使用的是 MySQL 5.6 或者更新版本,把 innodb_undo_tablespaces 设置成 2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。

覆盖索引

查询里面,索引 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

回到主键索引树搜索的过程,我们称为回表。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

最左前缀原则

B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

在建立联合索引的时候,如何安排索引内的字段顺序。

第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

索引下推

而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

通过两个 alter 语句重建索引 K,以及通过两个 alter 语句重建主键索引是否合理?

重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替 : alter table T engine=InnoDB。

全局锁

顾名思义,全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。

所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。

既然要全库只读,为什么不使用 set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。

在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。

谢谢你请我喝牛奶

欢迎关注我的其它发布渠道